微積分上課筆記3
本文最後更新於:2022年11月28日 下午
微積分上課筆記
微分
P.441
$\displaystyle (\ln x)’ = \frac{x’}{x}$ $\text{or}$ $\displaystyle [\ln(g(x))]’ = \frac{g’(x)}{g(x)}$
求$\displaystyle y=\frac{x^{\frac{3}{4}} \sqrt{x^2+1}}{(3x+2)^5}$之微分
$\displaystyle \frac{dy}{dx} \frac{1}{y}= \frac{3}{4} \frac{1}{x}+\frac{1}{2} \frac{2x}{x^2+1}-5\frac{3}{3x+2}$
$\ln e^x = x\ln e = x$
$(x\ln e)’ = (x)’ = 1$
$\displaystyle\frac{1}{e ^ 2} \frac{d}{dx}e^x=1$
$\displaystyle\rightarrow \frac{d}{dx}e^x=e^x$
唯一一個微分後不變的ㄈ
與$log$之關係
$\displaystyle \log_b^a=\frac{\ln a}{\ln b}$
if b is a constant
$\displaystyle
$\displaystyle (x^x)’ = e^{x \ln x}$
積分
求$\displaystyle \int_1^e \frac{\ln x}{x}dx$
$\displaystyle =\int_1^e (\ln x) \cdot d(\ln x)$
$\text{(due to}$ $(\ln x)’ = \frac{1}{x} \text{)}$
$\displaystyle =\frac{1}{2}(\ln x) ^ 2|_1^e$
反函數
$y = \ln x \rightarrow x = \exp y$
$\displaystyle e^x=y \rightarrow \ln y=x$
$\displaystyle e^{\ln x}=x$
$\ln{(e^x)} = x, x \in R$